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Abstract 

 It is well known that the semi-Lagrangian method is used to simulate advection-type flow problems 

in computational fluid dynamics (CFD) (see, for example, [1, 2, 3, 4, 6, 7, 8, 9], etc.). The movement 

of particles is described in a flow fi eld along their characteristic curves as a solution of nonlinear 

Cauchy problem in a fi xed framework for each discretized time unit. One of the reasons contributing 

to the popularity of this method is that it can avoid bad representation problems of fluid features 

occurring in the Lagrangian method such as the accumulation of particles along characteristic curves 

or vacancy in a spatial domain for a long-time simulation [5]. Especially, it is known that the 

backward semi-Lagrangian method (BSLM) has a good stability property such that it is free from 

the Courant-Friedrichs-Lewy (CFL) condition between the temporal step size and the spatial grid 

size. In this presentation, we give a talk about a concrete convergence analysis with stability for a 

backward semi-Lagrangian method in a non-linear Burgers’ equation with the Dirichlet boundary 

conditions. The material time derivative and the diffusion term along characteristic curves are 

discretized by backward difference formula of type 2 (BDF2) and the second order central finite 

difference respectively, together with the local Lagrangian interpolation. The Cauchy problem for 

characteristic curves is resolved by an iteration-free method, error correction method based on a 

modifi ed quadratic polygon. Using mathematical induction hypotheses under the mesh restriction 

Δt = O(Δx1/2) between the temporal step size Δt and the spatial grid size Δx, we prove that the 

proposed method has the convergence order O(Δt2 + Δx2 + Δxp/Δt) in the sense of the discrete H1-

norm, where p is the degree of an interpolation polynomial. Further, we establish the unconditional 

stability of the method and present numerical tests to support the theoretical analyses. 
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